

How to Create Nice Use Cases of Mathematical Optimization?

NTTDATA Mathematical Systems Inc. Takahito Tanabe (tanabe@msi.co.jp)

© 2020 NTT DATA Corporation

Our Company Profile

We call ourselves

Name **NTT DATA Mathematical Systems Inc.** Shinanomachi, Shinjuku-ku, Tokyo **Office location** Founded in 1982 as Mathematical Systems Inc. History Joined NTT DATA group in February, 2012 Changed name to NTT DATA Mathematical Systems Inc. in September, 2013 **Common Stock** 56 million yen **Financial Information** Net Sales : 1700 million yen Ordinary Income : 305 million yen (April 1,2018 to March 31,2019) Number of Employees 115 **Technical staff : about 87** Background Degree (as of April 1, 2020) -Scientists : 65% -Master : 67% -Engineers : 10% -Ph.D. : 14% **Business** Packaged software development and sales Analysis and Consulting services Entrusted development of software

Our Company Profile (Our latest projects)

- **1**. Optimize the production plan for a new smart factory
- 2. Update the existing credit model with the latest technologies
- 3. Arrange biological data for machine learning and visualization
- 4. Create a new middleware for a quantum computer
- 5. Enable process simulation and GPU acceleration
- 6. Create a search engine that responds to ambiguous phrases
- 7. Provide a lecture of basics of data analysis useful for business
- 8. Process data for cross tabulation systems
- 9. Add functions to programs that have been maintained for 30 years
- 10. Implement anomaly detection engine to embedded system
- 11. Improve the accuracy of image processing DL by 5%

•••

Rather than specific AI technologies, We provide the right solution for each client.

NTTData

Our Company Profile (in Figure)

Now, we have become..

Leading OR company in Japan

- Over 25 years of Experience in OR
- Clients : Automotive manufacturer, Energy, Railway, etc..

Usecases from 'Mathematical Systems User Conference 2019':

Tokyo Gas Co., Ltd.:

Toward implementation of logistics optimization of liquefied natural gas (LNG) sales business using lorry vehicles

Railway Technical Research Institute: How did Nuorium Optimizer changed Track maintenance

Japan International Cooperation Agency: Optimal matching of Japan Overseas Cooperation Volunteers

Our optimization toolbox: Nuorium Optimizer

Nuorium Optimizer : Solver Developed by MSI

- Platform: Windows, macOS, Linux (AWS etc..)
- Interface : C++, Python, R

Simple Demonstration: Staff rostering example

✓ Bring at least one person on Nightshift, two person on Dayshift everyday
 ✓ People cannot work after Nightshift

✓ Shoud take at least 1 off

✓ Members can do Nightshift 2 times at most (just once for A,B)

		Mon	Tue	Wed	Thr	Fri	Sat	Sun	#Nightshift	#Off
	А	0	Ν	—	D	D	D	D	1	1
	В	D	D	0	D	0	0	D	0	3
	С	D	0	N	_	Ν	_	0	2	2
	D	0	D	D	Ν	—	D	Ν	2	1
	E	Ν	_	D	0	D	Ν	_	2	1
#Nightshift		1	1	1	1	1	1	1		
#Dayshift		2	2	2	2	2	2	2		

Simple Demonstration: Staff rostering example

Simple Demonstration: Blending row materials

Simple Demonstration: Blending row materials

X 🔛	X X Y </th										
ファイル	ホーム 挿入 ページレイアウト I18 マ () が	数式 データ	校閲表示開発	アドイン チーム						~ (?) - ₫ :	
	Α	В	С	D	Е	F	G	Н	I	J	
1	blending problem			materials							
2			x	У	Z				¥В		
3		amount	4.2	4.5	0.0				▲		
4											
5	components	upper	Α	В	С	lower		result			
6	1	8	0 5	2	2	30		30			
7	2	7	0 8	4	3	20		51.612903	Exc	el-Ad	din
8	3	9	0 2	7	5	40		40			
9	4	3	0 4	2	3	20		25.806452			
10											
11		cost	120	80	70			864.51613	Oalu	lan ala	to he all here
12				0			Nuorium	1	Solut	cion od	tained by
13				File Edit	View Optimize	Help				rithm '	higher order IPM'
14				🕨 🕨 Run	All open data file		4				
10				blend.s	mp* × 🔏 data.d	lat ×		Open (Ctr	n-0)	• > *	
17				2 50	 Dlenaing aem t.Materials dem 	2∤					
18				3 Se	t.Components:	Ļ				2	
19				4 E1	<i>ement</i> ·j(set=Ma	aterials);↓		Ma		4	
20				5 <i>El</i>	ement i(set=Co	omponents); \downarrow					
21				6 <i>Pa</i>	<i>rameter</i> yield	(index=(i,j))	; ↓	Lan	guage		
22				7 Pa	<i>rameter</i> •upper	(index=i),low	ver(index=i);	[↓] 'CI			
23				8 Pa	<i>rameter</i> cost(:	index=j);↓					
24				9 Va	<i>riable</i> x(inde)	<=]);↓				8	
25				10 X[]]·>=·0;↓ por[i].>=.cum4		(i] i) >= lo	wor[i]:		9	1
26				12 <i>0h</i>	<i>iective</i> costTo	tal(type=mir	imize):↓	₩ĊĨ[1], Ψ		10	
14 4 F	I Sneet1 / Sneet2 / Sneet3 / Sheit	eto / Sheeto / Shee	t/ <u>/ t</u>]/	13 co	stTotal = sum	(cost[j]*x[j]	,j);↓			12 (

Simple Demonstration: Line dispatching

- ✓ Allocate line for production
- ✓ Produce amount as ordered
- ✓ Reduce setup cost as possible
- ✓ Load balancing setupCost 2 3 0 10 5 amount n 4 0 20 2 5 6 3 0 3 5 10 3 Δ 15 2 1 2 3 Δ Α В С Λ 2 D Ε F

0

Simple Demonstration: Line dispatching demo

、 数元	式 データ 校閲	表示 開発	アドイン チーム	dispatch.	xlsx - Microsof	t Excel						_ □ × ∞ ③ □ ⊡ X	
	_									- 1	1	*	
	A	В	С	D	E	F	GX	Н	Ι	J	K	L	
1	line dispato	h example											
2									Evcol-	- Addin			
3	stepMax	10							LVCCI	Auum			
4													
5	k	amount		setupCost	1	2	3	4	ŀ				
6	1	20		1	0	10	5	2	2				
7	2	5		2	4	0	1	2	2				
8	3	5		3	6	3	0	2	2				
9	4	15		4	10	3	1	0)				
10													
11	assignment	1	2	3	4	5	6	7	8	9	10	costTo	
12	A	2	2	2	2	2	3	3					
13	В	1	1	1	1	1	4	4					
14	С	1	1	1	1	1	1	1	1				
15	D	4	4	4	4	4	4	4	4				
16	E	1	1	1	1	1	1	1					
17	F	4	4	4	4	4	3	3	3		.		
18	0										Soluti	on obt	ained by
19	0			r	Nuorium							Цариа - ⁶ Г	יחנ
20	File Edit	View Optimize	Help				Test	Model & D	ata		algori	inm c	JD
21	Run A	All open data file			lodelir	D		20 🗸 Dawn					
22		dispatch.s	mp* ^ 🛛 🖉 dat	ta.dat(2) ^ 🦻			e		○ ➡				
23	I 15 Produ	uct.add("0")	;·//·0·mean	s∙'idle'↓ 📘	angua	ge		📲 solfile.log	🗐 su				
24	16 ↓			6	CIMDI	C'	p	t]↓					
25	17 Integ	gerVariable.	x(index=(i,	j,k1,k2),ty		C	t	.bat·Ver·2.	2.5 for				
26	l 18 ↓					ht·(C)·1991	I · NTT · DAT						
27	19 Const	t <i>raint</i> C(ind	ex=(i,j,k))	; ↓			4 Build with Microsoft Visua						
28	20 C[i,j	,k]·=·sum(x	[i,j-1,k1,k	$(k1, k1 \cdot != \cdot 0))$	sum(x[i,	i,k,k1],	5 ↓						
29	21 C[i,j	.0].=.sum(x	[i.i-1.k1.0	1.k1) x[i,i,0),0]·==·0,·i	>= 2: /	<pre>6 Output: dispatch_info.jsor</pre>						
30	22 ↓			, , , ,	, , , ,	-,	7 Compili	ng∙dispatch	n.obj.↓				
	> 23 Inter	nerVariable.	x0(index=(i	.k).type=hinary	(): J		8 Compili	ng dispatch	Check.ob				
	25 11109			, c) r c) pc-oirling	<i>// •</i>	×	9 Compili	ng dispatch	ison.ot		I 160% ─		

Classifying applications/mathematical optimization model

Math. Model #var,#cons - 50
Optimal solution
in sub-second.

#var,#cons - 10⁴⁻⁵ Fair solutions available in several min.

#var,#cons > 10⁶
feasible solution
not always available

Typical Communication #1 (easy application ⇔ easy model)

Typical Communication #2 (difficult/huge model $\Rightarrow \cdots$)

Current Development of ParaNUOPT (Nuorium Optimizer powered by UG solver)

- ParaNUOPT first solved the following open instances from MIPLIB2017
 - gen-ip016 (in 71498 seconds, on PC cluster with 19 cores)
 - rococoC11-010100 (in 32368 seconds, on PC cluster with 9 cores)
- We are now developing ParaNUOPT on a general cloud HPC cluster.

What do users want ?

© 2020 NTT DATA Corporation

More Desirable Communication

Distill our 'use cases'

Use Cases

- 1. Messy and Mundane "Translate individual expertise to shoulder drudgery !"
- 2. Unify Separated Decision "Make separate decision consistent !"
- 3. No Precedent "Find realisitic feasible solution !"
- 4. Too Binding "Find the binding constraint to improve decition !"

Mathematical Optimization Users have Tasks such that ..

1. Messy and Mundane

"Translate individual expertise to shoulder drudgery !"

- 2. Unify Separated Decision "Make separate decision consistent !"
- 3. No Precedent "Find realisitic feasible solution !"
- 4. Too Binding "Find the binding constraint to improve our decision !"

Mathematical Optimization Users have Tasks such that ...

- 1. Messy and Mundane "Translate individual expertise to shoulder drudgery !"
- 2. Unify Separated D
 - "Make s
- 3. No Prece "Find re
- Staff Rostering for next month
 Vehicle Dispatch for next week
 Cutting Stock Planning for delivery

4. Too Bind "Find th Slightly different setting, Not well-documented, Repetitive, Difficult to find successor

A Cutting Stock Problem for Film Manufacturer (2017–)

✓ Cutting Pattern is 2D region tiled by rectangular products

- ✓ Fulfill the product demand
- ✓ Trade-off: Reduce (# of Cutting Pattern) ⇔ (amount of loss) Make plan weekly for product demand

Mathematical Optimization Users have Tasks such that ..

1. Messy and Mundane

"Translate individual expertise to shoulder drudgery !"

- 2. Unify Separated Decision "Make separate decision consistent !"
- 3. No Precedent "Find realis

4. Too Binding "Find the b Buy cheap material, as long as our factory can accept.
Receive the order, if it meets the production capacity.

Relevant (but separated) departments make individual decision, but they should be consistent.

Manufacurer (Separate Department, individual decision)

Shipping Delivery Planning at a Japanese Manufacturer (2018–)

- ✓ Shipping & Delivery planning
- ✓ Material Purchase (loading) / production (unloading) should be consistent
- $\checkmark\,$ Aimed overall cost minimization

Purchase & Production should be consistent aiming at cost reduction. ⇒ Make separate decision consistent

Mathematical Optimization Users have tasks such that ...

 Messy and Mun "Translate ind"
 Unify Separate "Make separa"
 No Precedent
 See if production is possible with the reduced facility / new row-material.
 Confirm that personel reduction do not affect the operation Simulate the realistic outcome. One realistic feasible solution will do.

"Find realisitic feasible solution !"

4. Too Binding "Find the binding constraint to improve our decision!"

Production Resource Planning at a Japanese Manufacturer (2013-)

 $\checkmark Each \ product \ has unique \ process \ flow$

✓ Each product requires certain machine resource we should allocate

✓ Each machine need special equipment to handle each product's process

✓ Reduce equipment keeping the production output within the available machine resource

Achievement: Reduced special equipments by 30~50% # of machines : 60 # of products : 48

No one knows if the production possible with reduced equipment.

 \Rightarrow Simulate the realisitic outcome.

LNG plant scheduling at Osaka Gas Company (2008–)

- ✓ Given the arrival date of LNG-vessels, determine LNG plant tank operation schedule (30days, daily, 18tanks)
- \checkmark Move storage LNG and never miss the LNG conveyed.
- ✓ Constraint from equipment, facility cheking schedule.
- Output LNG density control is CRUCIAL, confirm if production possible with low-density LNG.

No one knows if the production possible with low-density LNG.

 \Rightarrow Simulate the realisitic outcome.

Staff rostering at a Japanese Bank (2015)

- ✓ Bank headquarter wants to reduce staff.
- \checkmark Check if the operation of backoffice with staff members reduced.

Real feasible staff rostering works as 'evidence' and succeeded to persuade the backoffice.

```
\Rightarrow Simulate the realisitic outcome.
```

Mathematical Optimization Users have Tasks such that ...

- 1. Messy and Mundane "Translate individual expertise to shoulder drudgery !"
- 2. Unify Separated Assign enough staffs on call but overwork prohibited!
 "Make separated Reduce maintenance cost not sacrificing quality."
- 3. No Precedent "Find realisiti

Find the source of the trade-off

4. Too Binding "Find the binding constraint to improve our decision !"

Staff Rostering at Call-Center (2012-)

- \checkmark Monthly staff rostering for upto 250 staffs
- \checkmark Enough staff should be on call.
- \checkmark Staff skill, vacation schedule, condition of employment should be satisfied.

Staff

Call loss should be minimzied with

 \Rightarrow Find the trade-off solution.

numerous staff constraint

Railway maintenance scheduling at railway technical research institute (2000-)

- \checkmark Given the result of measurement, plan the maintenance schedule using MTT.
- ✓ Cost should be reduced not sacrificing safety.

Core competency of mathematical optimization #1

Core competency of mathematical optimization #2

'Nearly optimal' \Leftrightarrow We are approaching some of the binding constraint.

Thank you very much for listening !

https://www.msi.co.jp/nuopt/english

